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1. Introduction

In an unpublished work [1], Fateev, Zamolodchikov and Zamolodchikov discovered that the

SL(2, R)/U(1) WZW model describing the two-dimensional conformal field theory whose

target space is the cigar, or Euclidean 2D black hole [2 – 4]

ds2

k
= dr2 + tanh2 rdθ2 , r > 0, θ ∼ θ + 2π (1.1)

where k is the level of SL(2, R), has a dual description in terms of a sine-Liouville theory.

This is a free theory with linear dilaton perturbed by a sine-Liouville potential which carries

a unit of winding,

L = (∂φ)2 + (∂X)2 + µ cos(
√

kX̃)e−
√

k′φ + R k′−1/2φ , (1.2)

where k′ = k − 2 and X̃ = XL − XR.

This so-called FZZ duality, has been investigated and exploited in several works [5 –

12]. It has been generalized to the N = 2 supersymmetric case [13], where it follows

from mirror symmetry [14] (see also [15]). For worldsheets with boundary there exists a

boundary version of the FZZ duality, both when the bulk theory has the cigar/sine-Liouville

perturbations (or their N = 2 counterparts) turned on [16] or when the bulk theory is flat.

In the latter case, the D1 brane of the cigar [17] becomes the hairpin brane [18], which has

a sine-Liouville dual description studied in [19, 20].

In this paper we explore the FZZ duality by studying the exact operator quantization

of a classical scattering problem. The same ideas and techniques are relevant for the simpler
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case of Liouville theory, which we discuss first as a warm up. In both cases we show that

the scattering coefficient of a free field bouncing off the Liouville wall or the tip of the

cigar cannot be determined without further input, which comes from assuming that there

is a second scattering process with the same scattering coefficient. In the case of Liouville,

discussed in section 2, the second theory is Liouville itself with the Liouville coefficient

b replaced by b−1. In the case of the cigar, discussed in section 3, we find a field which

represents a scattering process of sine-Liouville type and which yields the correct reflection

coefficient, computed previously using other techniques. We also comment on the relation

between the results of this work and the techniques considered in [12], which are based on

exploiting the parafermionic symmetry of the model.

2. Duality in Liouville scattering

It is well known that the Liouville classical equation can be solved in terms of a free field.

Therefore it is natural to try to quantize Liouville theory by quantizing the mapping to this

free field via operator quantization. This program has been carried out successfully in [21]

were the DOZZ formula [22, 23] for the Liouville three point function was reobtained (see

also [24]).

In this section we will use similar techniques to compute the reflection coefficient of an

asymptotically free field bouncing off the Liouville wall. The relevant ideas were succinctly

exposed in [25] (see section 14 there), and we will flesh them out here, stressing the role of

the b ↔ 1/b duality.

2.1 Classical scattering

We work first in the cylinder (σ, t) ∼ (σ + 2π, t). The Liouville equation of motion

∂+∂−ϕ(σ, t) = 2πµcbe
bϕ(σ,t) , (2.1)

where x± = t±σ, can be solved in terms of two arbitrary functions B = B(x+), B̄ = B̄(x−),

e−
bϕ
2 =

√
πµcb

1 − BB̄
√

∂+B∂−B̄
. (2.2)

It is convenient to express B, B̄ through a free field φ(σ, t) = φ(x+) + φ̄(x−) as

∂+B =
√

πµcbe
bφ(x+) , (2.3)

∂−B̄ =
√

πµcbe
bφ̄(x−) . (2.4)

The fields φ, φ̄ have an expansion,

φ(x+) =
x

2
+

p

2
x+ + oscilators (2.5)

φ̄(x−) =
x

2
+

p

2
x− + oscilators (2.6)
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Requiring B to have the same monodromy as ∂+B(x+), ∂+B(x+ +2π) = eπpb∂+B(x+), and

similarly for B̄, fixes the solutions to (2.3)–(2.4) as

B(x+) =

√
πµcb

(eπpb − 1)

∫ 2π

0
dσ′ebφ(x++σ′) , (2.7)

B̄(x−) =

√
πµcb

(eπpb − 1)

∫ 2π

0
dσ′′ebφ(x−+σ′′) . (2.8)

The solution (2.2) is invariant under B, B̄ → 1/B, 1/B̄. This transformation corresponds to

mapping the free field φ(σ, t) into another free field ξ(σ, t) = ξ(x+)+ξ(x−) with momentum

−p, given by

e−
b
2
(ξ(x+)+ξ(x−)) = −B(x+)B̄(x−)e−

b
2
(φ(x+)+φ(x−)) . (2.9)

This mapping encodes the physical meaning of the solution (2.2) as a scattering of the free

field φ(σ, t) off the Liouville wall [26]. To see this, note first that as a function of φ, φ̄,

eq. (2.2) is

e−
bϕ(σ,t)

2 = e−
b
2
(φ(x+)+φ(x−))

[

1 − πµcb
2

(eπpb − 1)2

∫ 2π

0
dσ′ebφ(x++σ′)

∫ 2π

0
dσ′′ebφ(x−+σ′′)

]

. (2.10)

Suppose that p > 0. Then at the infinite past and future we have

lim
t→−∞

e−
bϕ(σ,t)

2 = e−
b
2
(φ(x+)+φ̄(x−)) , (2.11)

lim
t→+∞

e−
bϕ(σ,t)

2 = e−
b
2
(ξ(x+)+ξ(x−)) . (2.12)

Therefore at both ends t → ±∞ the Liouville field ϕ is a free field. The Liouville wall

maps the incoming (p > 0) free field φ(σ, t) into the outgoing (p < 0) free field ξ(σ, t). The

case p < 0 is obtained by time reversal.

2.2 The reflection coefficient and the Liouville duality

A remarkable fact is that the transformation from the field φ(σ, t) to the field ϕ(σ, t)

is canonical [25]. This suggests to quantize Liouville theory by quantizing the free field

φ(σ, t) and defining a quantum version of eq. (2.10). We will perform the quantization in

the complex Euclidean plane. Let us Wick rotate the time variable into τ = it, and take

z = eτ+iσ, z̄ = eτ−iσ as two independent variables.

The fields φ, φ̄ have a mode expansion

φ(z) = x− i
p

2
log z +

i√
2

∑

n 6=0

αn

n

1

zn
, (2.13)

φ̄(z̄) = x− i
p

2
log z̄ +

i√
2

∑

n 6=0

ᾱn

n

1

z̄n
, (2.14)

and the modes satisfy the commutation relations

[x,p] = i [αn, αm] = [ᾱn, ᾱm] = nδn+m,0 . (2.15)
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Normal ordering :: is defined by putting the annihilation operators αn>0 and p to the right,

and the creation operators αn<0 and x to the left. With this prescription the short distance

singularity is

φ(z)φ(w) = : φ(z)φ(w) : −1

2
log(z − w) , (2.16)

and similarly for φ̄(z̄). The stress tensor of the quantum theory is

T (z) = −(∂φ(z))2 + Q∂2φ(z) , (2.17)

with

Q = b + b−1 (2.18)

and central charge

c = 1 + 6Q2 , (2.19)

and there is a similar anti-holomorphic copy. A chiral vertex operator of the form

: e2αφ(z) : = e2αxe−2α ip
2

log ze
− i2α√

2

P

n>0

α−n
n

zn

e
i2α√

2

P

n>0
αn
n

z−n

, (2.20)

has holomorphic conformal dimension

∆ = α(Q − α) , (2.21)

and carries p momentum

p = −2iα . (2.22)

For normalizable states with α = Q
2 + iR, the last expression is consistent with the anoma-

lous hermiticity of p,

p† = p + 2iQ , (2.23)

which follows from the presence of the background charge.

In order to define the quantum version of e−
bϕ
2 , let us define the “screening charges”

S(z) =

∫ ze2πi

z
dw e2bφ(w) , (2.24)

S̄(z̄) =

∫ z̄e2πi

z̄
dw̄ e2bφ̄(w̄) . (2.25)

Since the integrand has conformal dimension one, these are conformal primaries with di-

mension zero, as follows from

T (y)S(z) ∼
∫ ze2πi

z
dw

∂

∂w

[

e2bφ(w)

y − w

]

, (2.26)

∼ (e2bπ(p+2ib) − 1)

y − z
e2bφ(z) ,

∼ 1

y − z

∂S(z)

∂z
.
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The quantum version of e−
bϕ
2 in (2.10) can now be taken as

Vb(z, z̄) = e−bφ(z)ebxe−bφ̄(z̄) − µcπb2

(e−4πib(α−b) − 1)

S(z)e−bφ(z)e−bxe−bφ̄(z̄)S̄(z̄)
1

(e−4πibα − 1)
, (2.27)

where we have defined α = ip2 (see (2.22)). The factors e±bx are inserted in order to

eliminate the duplication of the zero modes coming from φ and φ̄. Their position is dictated

by the preservation of the normal order in the exponentials. In the factor (e−4πib(α−b)−1)−1,

the shift in α is because we have written it to the left of S(z)e−bφ(z).

An important property of the operator Vb, is that, when defined in the Minkowskian

cylinder (t, σ), it satisfies the locality condition [25]

[Vb(t, σ),Vb(t, σ
′)] = 0 . (2.28)

The product of screening charges and exponentials in Vb is

S(z)e−bφ(z) =

∫ ze2πi

z
dw (w − z)b

2
: e2bφ(w)−bφ(z) : , (2.29)

e−bφ̄(z̄)S̄(z̄) =

∫ z̄e2πi

z̄
dw̄ (z̄ − w̄)b

2
: e2bφ̄(w̄)−bφ̄(z̄) : . (2.30)

In the interacting theory, the primary fields can still be labeled by α, with conformal

dimension α(Q−α). This expression is symmetric under α → Q−α. For delta-normalizable

states with α = Q/2 + iP , this corresponds to P → −P . Therefore an operator S which

maps a state with α into one with Q − α can be considered as the quantum version of the

mapping between asymptotic free fields provided by the classical solution. We do not need

here the explicit form of the Liouville primaries for arbitrary α (see [25, 21]). It is enough

for us that their action on the vacuum creates a state |α〉, such that

S|α〉 = |Q − α〉 . (2.31)

The ambiguity of the parametrization of the classical solution using φ or ξ, should manifest

itself in the invariance

Vb(z, z̄) = S
−1Vb(z, z̄)S . (2.32)

The operator S should be a product S = PR, where the operator P acts on the zero modes

to change the eigenvalue of α, and R acts as

R|α〉 = R(α)|α〉 , (2.33)

where R(α) is the reflection coefficient that we want to compute. Note that from S2 = 1 it

follows that

R(α)R(Q − α) = 1 . (2.34)
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An arbitrary matrix element of Vb(z, z̄) at z = z̄ = 1 is, taking proper care of the zero

modes,

〈α′|Vb(1, 1)|α〉 = δ(α′ − α + b/2) + δ(α′ − α − b/2)Db(α) . (2.35)

Using (2.29)–(2.30), the function Db(α) is given by

Db(α) = −µcπb2 1

(e−4πib(α−b/2) − 1)
I(α)Ī(α)

1

(e−4πibα − 1)
, (2.36)

where

I(α) =

∮

dw(w − 1)b
2
w−2bα , (2.37)

Ī(α) =

∮

dw̄(1 − w̄)b
2
w̄−2bα (2.38)

= e−iπb2I(α) , (2.39)

and both integrals are taken counterclockwise in the unit circle. Since the integrand of

I(α) is not analytic at w = 0, 1, the contour can be deformed keeping the point w = 1

fixed and without crossing the point w = 0. This leads to

I(α) = eπib2(e−4πib − 1)

∫ 1

0
dw (1 − w)b

2
w−2bα ,

= eπib2(e−4πib − 1)
Γ(1 − 2bα)Γ(b2 + 1)

Γ(2 − 2bα + b2)
, (2.40)

where we used the integral representation (A.3) of the Euler beta function. The final

expression for Db(α) is

Db(α) = µcb
2πΓ2(1 + b2)γ(2αb − b2 − 1)γ(1 − 2αb) , (2.41)

where γ(x) = Γ(x)/Γ(1 − x). From the invariance (2.32), it follows that equation (2.35)

should be equal to

〈α′|S−1Vb(1, 1)S|α〉 = R−1(α + b/2)R(α)δ(α′ − α − b/2)

+R−1(α − b/2)R(α)Db(Q − α)δ(α′ − α + b/2) . (2.42)

Comparing the coefficients of the delta functions in (2.35) and (2.42) gives two equations

for R(α), but it is easy to see that they are equivalent using (2.34). The resulting equation

for R(α) is

R(α + b/2) = R(α)D−1
b (α) . (2.43)

This is a difference equation that constraints the form of R(α) but does not fix it uniquely,

since any solution can be multiplied by an arbitrary periodic function of α with period b/2.

So we find that the classical Liouville scattering problem has no unique quantum

version. A similar ambiguity is encountered in the bootstrap approach to quantum Liouville
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theory [27, 28]. There, one imposes the symmetry b ↔ 1/b. In our case this leads to a

second equation for R(α),

R(α + b−1/2) = R(α)D̃−1
1/b(α) , (2.44)

where

D̃1/b(α) = µ̃cb
−2πΓ2(1 + b−2)γ(2αb−1 − b−2 − 1)γ(1 − 2αb−1) . (2.45)

Eqs. (2.34), (2.43) and (2.44), yield, for irrational b2, a unique reflection coefficient,

R(α) = −
(

µcb
2Γ2(b2)

)
Q−2α

b
[

(Q − 2α)2γ(b(Q − 2α))γ(b−1(Q − 2α))
]−1

, (2.46)

with µ̃cb
−2Γ2(b−2) =

(

µcb
2Γ2(b2)

)1/b2
. This is the same reflection coefficient that follows

from the DOZZ formula [22, 23], with the identification

µcπb2 = µ
DOZZ

sin(πb2) . (2.47)

The important lesson that we learn is that in order to fix uniquely the reflection coefficient

of Liouville theory, we must assume that there are two classical scattering problems (related

by b ↔ 1/b), with the same quantum reflection coefficient.

3. FZZ scattering

In this section we will address a similar scattering problem formulated in the cigar back-

ground (1.1). The classical equations of the cigar non-linear sigma model were solved in

terms of free fields in [29 – 31]. This solution was canonically quantized in the interesting

work [32]. We start reviewing some results of these works. As we will see, the equations

obtained from quantizing the cigar are not enough to fix the reflection coefficient. We will

show that assuming that a dual scattering problem of sine-Liouville type has the same

reflection coefficient, fixes it to its known value from other quantization schemes.

3.1 Classical scattering in the cigar

Let us consider the cigar metric (1.1) parameterized with Kruskal coordinates

u =
sinh reiθ

√
λ

ū =
sinh re−iθ

√
λ

. (3.1)

The parameter λ will play a role similar to µc in Liouville theory. In these variables, the

classical action of a string propagating in the cigar background (1.1) is, in the complex

plane,

S[u, ū] =
k

4π

∫

dzdz̄

[

∂u∂̄ū + ∂ū∂̄u

λ + uū

]

. (3.2)

The equations of motion following from this action are the real and imaginary parts of

∂∂̄u =
ū∂u∂̄u

λ + uū
. (3.3)
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The exact solution to this equation found in [29 – 31] in terms of two free fields φ(z, z̄) =

φ(z) + φ̄(z̄) and X(z, z̄) = X(z) + X̄(z̄) reads

u(z, z̄) = e
1√
k
(φ(z)+φ̄(z̄)+iX(z)+iX̄(z̄)) [

1 − λA(z)Ā(z̄)
]

, (3.4)

where A(z) and Ā(z̄) are solutions to

∂A(z) =
1√
k
(∂φ(z) + i∂X(z))e

− 2√
k
φ(z)

, (3.5)

∂̄Ā(z̄) =
1√
k
(∂̄φ̄(z̄) + i∂̄X̄(z̄))e

− 2√
k
φ̄(z̄)

. (3.6)

As in Liouville theory, this mapping to free fields is canonical [29 – 31]. Expanding the

fields φ, φ̄ in modes as

φ(z) =
x1

2
− i

p1

2
log z + oscilators (3.7)

φ̄(z̄) =
x1

2
− i

p1

2
log z̄ + oscilators (3.8)

we see that ∂A(z), ∂̄Ā(z̄) have monodromies

∂A(e2πiz) = ∂A(z)e
− 2πp1√

k , (3.9)

∂̄Ā(e2πiz̄) = ∂̄Ā(z̄)e
− 2πp1√

k . (3.10)

Requiring these monodromies to be preserved by A(z), Ā(z̄), fixes them uniquely as

A(z) =
1

√
k(e

− 2πp1√
k − 1)

∫ ze2πi

z
dw (∂φ(w) + i∂X(w))e

− 2√
k
φ(w)

, (3.11)

Ā(z̄) =
1

√
k(e

− 2πp1√
k − 1)

∫ z̄e2πi

z̄
dw̄ (∂̄φ̄(w̄) + i∂̄X̄(w̄))e

− 2√
k
φ̄(w̄)

, (3.12)

where both integrals are taken counter-clockwise.

Writing expression (3.4) in Minkowskian cylinder coordinates, we get the same type

behavior as in the Liouville case. Assuming p1 < 0 and the boundary conditions r(σ, t →
±∞) → ∞, the solution behaves, in the far past and future, as

lim
t→−∞

u = lim
t→−∞

er+iθ

2
√

λ
= e

1√
k
(φ(x+)+φ̄(x−)+iX(x+)+iX̄(x−))

(3.13)

lim
t→+∞

u = lim
t→+∞

er+iθ

2
√

λ
= −λe

1√
k
(φ(x+)+φ̄(x−)+iX(x+)+iX̄(x−))

A(x+)Ā(x−) . (3.14)

We see thus that the incoming and outgoing fields are free fields. The cigar scatters the

incoming free field φ(σ, t) + iX(σ, t) into an outgoing field which has opposite momentum

−p1 > 0. The case with p1 < 0 is obtained by time reversal.
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3.2 The reflection coefficient

The work [32] quantized the field u in the Minkowskian cylinder. We will recast here those

results in the Euclidean complex plane.1 The quantum free fields have mode expansions

φ(z) = x1 − i
p1

2
log z +

i√
2

∑

n 6=0

α
(1)
n

n

1

zn
, (3.15)

φ̄(z̄) = x1 − i
p1

2
log z̄ +

i√
2

∑

n 6=0

ᾱ
(1)
n

n

1

z̄n
, (3.16)

and

X(z) = x2 − i
p2

2
log z +

i√
2

∑

n 6=0

α
(2)
n

n

1

zn
, (3.17)

X̄(z̄) = x̄2 − i
p̄2

2
log z̄ +

i√
2

∑

n 6=0

ᾱ
(2)
n

n

1

z̄n
. (3.18)

The zero modes of the X(z) and X̄(z̄) are independent since X is a compact coordinate,

with radius 2π. The modes satisfy commutation relations similar to (2.15). The field X is

compact with radius
√

k, therefore the spectrum of p2, p̄2 is

p2 =
m + nk√

k
p̄2 =

m − nk√
k

. (3.19)

Normal ordering :: is defined as we did in the Liouville case, and the short distance singu-

larities are as in (2.16). The stress tensor of the quantum theory is

T (z) = −(∂φ(z))2 − b∂2φ(z) − (∂X(z))2 , (3.20)

with

b =
1√

k − 2
, (3.21)

and there is a similar anti-holomorphic copy. The central charge is c = 2 + 6
k−2 . A chiral

vertex operator : e2bjφ(z) : has holomorphic conformal dimension

∆ = −j(j + 1)

k − 2
, (3.22)

and carries p1 momentum p1 = −2ibj, For normalizable states with j = −1
2 + iR, the last

expression is consistent with the anomalous hermiticity of p1,

p
†
1 = p1 − 2ib , (3.23)

1The main difference between the two cases lies in the normal ordering of the zero modes and in the

fact that the momentum operator in the complex plane is not Hermitian in the presence of a background

charge (see eq. (3.23) below). For details on the differences between the quantization in the cylinder and

the complex plane see [33].
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which follows from the presence of the background charge.

In order to build the quantum counterpart of the classical field u(z, z̄) of (3.4), let us define

f(z) = ebφ(z)+ibηX(z) , (3.24)

∂A(z) =
1√
k
(∂φ(z) + i∂X(z))e−2bφ(z) (3.25)

and similarly f̄(z̄) and ∂̄Ā(z̄), with η = 1
b
√

k
=

√

k−2
k . The change in the exponents of φ, φ̄

from the classical case is in order for ∂A, ∂̄Ā to be primaries of conformal dimension one.

The monodromy-preserving solutions for A and Ā are now

A(z) =
1√
k

1

(e−2bπ(p1−2ib) − 1)
Q(z) , (3.26)

Ā(z̄) =
1√
k
Q̄(z̄)

1

(e−2bπp1 − 1)
, (3.27)

where

Q(z) =

∫ ze2πi

z
dw (∂φ(w) + i∂X(w))e−2bφ(w) , (3.28)

Q̄(z̄) =

∫ z̄e2πi

z̄
dw̄ (∂̄φ̄(w̄) + i∂̄X̄(w̄))e−2bφ̄(w̄) . (3.29)

Notice the shift on p1 in (3.26) when it appears multiplying from the left. The fields Q(z)

and Q̄(z̄) are primary fields of dimension zero, as in (2.26).

We can now define the quantum version of u(z, z̄) in (3.4) as

u(z, z̄) = f(z)e−bx1 f̄(z̄) − λA(z)f(z)ebx1 f̄(z̄)Ā(z̄) ,

= f(z)e−bx1 f̄(z̄)−λ

k

e−2πib2(j+1)

2i sin(2πb2(j+1))
Q(z)f(z)ebx1 f̄(z̄)Q̄(z̄)

e−2πib2j

2i sin(2πb2j)
. (3.30)

We have defined the operator j as p1 = −2ibj, and we have added the factor ebx1 in order

to compensate for the doubling of x1 in the mode expansion (3.15)–(3.16) of φ and φ̄. The

position of ebx1 is chosen so that we get the monodromy

u(ze2πi, z̄e−2πi) = u(z, z̄)e
πi√

k
(p2−p̄2)

(3.31)

as in the classical solution.

It was shown in [32] that the operator u in the Minkowskian cylinder satisfies a locality

condition similar to (2.28),

[u(t, σ),u(t, σ′)] = 0 . (3.32)

To compute the reflection coefficient, note that the mapping j → −j−1 leaves the conformal

dimension (3.22) invariant and for normalizable states with j = −1
2 + iP it amounts to

inverting the sign of the momentum P . As in the case of Liouville theory, we introduce an

operator S that maps the state with momentum j to the state with momentum −j − 1

S|j,m, n〉 = | − j − 1,m, n〉 , (3.33)

– 10 –



J
H
E
P
1
1
(
2
0
0
6
)
0
5
5

and leaves u invariant,

S
−1u(z, z̄)S = u(z, z̄) . (3.34)

The operator S can be decomposed into

S = PR , (3.35)

where P acts only on the j momentum of a state and changes its value to −j − 1, and R

acts as

R|j,m, n〉 = R(j,m, n)|j,m, n〉 , (3.36)

with R(j,m, n) being the reflection coefficient we wish to compute. Note that from S2 = 1

it follows that

R(j,m, n)R(−j − 1,m, n) = 1 . (3.37)

For the matrix elements of the operator u(z, z̄) at z = z̄ = 1, we get, taking proper account

of the zero modes in (3.30),

〈j′,m′, n′|u(1, 1)|j,m, n〉 = δn′,nδm′,m+1

[

δ

(

j′−j− 1

2

)

+δ

(

j′−j+
1

2

)

D(j,m, n)

]

, (3.38)

where

D(j,m, n) = (j − 1

2
(m + nk))(j − 1

2
(m − nk))

λΓ2(b2 + 1)

k2

γ(2b2j)

γ(1 + b2(2j + 1))
. (3.39)

The computation is a generalization of the one that led to the Liouville result (2.41), and

the details can be found in [32]. From eq. (3.34), it follows that the matrix element (3.38)

should be equal to

〈j′,m′, n′|S−1u(1, 1)S|j,m, n〉 = δn′,nδm′,m+1

[

δ

(

j′−j+
1

2

)

R−1

(

j+
1

2
,m+1, n

)

R(j,m, n)

+δ

(

j′−j− 1

2

)

R−1

(

j+
1

2
,m+1, n

)

R(j,m, n)

D(−j−1,m, n)

]

. (3.40)

Comparing (3.38) and (3.40) leads to two functional equations for R(j,m, n), but us-

ing (3.37) it is easy to see that they are equivalent. The resulting equation is

R

(

j − 1

2
,m + 1, n

)

= R(j,m, n)D−1(j,m, n) . (3.41)

This equation is not enough to fix R(j,m, n), since any solution can be multiplied by a

periodic function of j, with period 1
2 , and/or a periodic function of m with period 1.
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3.3 The sine-Liouville dual

In light of the FZZ duality, it is natural to expect that the reflection coefficient R(j,m, n)

will get fixed through a second set of equations, associated to a scattering problem of

sine-Liouville type. On the other hand, we do not expect that such a scattering problem

corresponds to solving the equations of motion of the classical sine-Liouville Lagrangian.

The reason is that the sine-Liouville interaction carries one unit of winding, and the reflec-

tion coefficient, which is equal to the two-point function, conserves the winding number [1].

To arrive to the form of the sine-Liouville scattering that we need, note that we expect

the FZZ duality to be related to a b ↔ b−1 transformation. Even though, unlike Liouville,

the theory is not self-dual, the exact solution of the closely related H3 WZW model shows

that the two functional equations that determine the three-point functions are related by

a b ↔ b−1 transformation [34]. Applying this transformation to f(z) in (3.24), we get

g(z) = e
1
b
φ(z)+i η

b
X(z) . (3.42)

In order to invert the sign of the p1 momentum carried by g via scattering, it follows

from (1.2) that we need two sine-Liouville interactions. This in turn allows to conserve the

winding number by adjoining two sine-Liouville interactions with opposite winding. We

propose that the FZZ dual of u(z, z̄) is the field

v(z, z̄) = g(z)e−
1
b
x1ḡ(z̄) (3.43)

+
λ̃

(e4πij − 1)(e2πi(j−r+k′) − 1)
B(z)g(z)e

1
b
x1ḡ(z̄)B̄(z̄)

1

(e4πij − 1)(e2πi(j−r̄−k′) − 1)
,

where r =
√

k
2 p2, r̄ =

√
k

2 p̄2 and

B(z) =

∫ ze2πi

z
dw1 ei

√
kX(w1)− 1

b
φ(w1)

∫ ze2πi

z
dw2 e−i

√
kX(w2)− 1

b
φ(w2) , (3.44)

and similarly for B̄(z̄). The main evidence for our proposal is that this expression yields the

correct reflection coefficient and a special structure constant which we discuss in the next

section. Much as in the Liouville or the cigar cases, the classical form of v(z, z̄) maps an

incoming free field into an outgoing free field when expressed in Minkowskian coordinates

in the cylinder.

The product of B(z) and g(z) is given by

B(z)g(z) =

∫ ze2πi

z
dw1

∫ ze2πi

z
dw2 : e−

1
b
φ(w1)− 1

b
φ(w2)+

1
b
φ(z)ei

√
kX(w1)−i

√
kX(w2)+i η

b
X(z) :

×(w1 − z)k
′
(w1 − w2)

−k+1 (3.45)

and similarly for ḡ(z̄)B̄(z̄). The spectrum of r, r̄ is (see (3.19))

r =
m + nk

2
, (3.46)

r̄ =
m − nk

2
. (3.47)
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We can now consider a generic matrix element of v(1, 1), which gives

〈j′,m′, n′|v(1, 1)|j,m, n〉 = δn′,nδm′,m+k′

[

δ

(

j′−j− k′

2

)

+ E(j,m, n)δ

(

j′−j+
k′

2

)]

(3.48)

where

E(j,m, n) =
λ̃K(j, r)K̄(j, r̄)

(e2πi(2j−k′) − 1)(e4πij − 1)(e2πi(j−r) − 1)(e2πi(j−r̄−k′) − 1)
. (3.49)

Here K̄(j, r̄) = e−iπk′
K(j, r)

∣

∣

r=r̄
and

K(j, r) =

∮ ∮

dw1dw2(w1 − 1)k
′
(w1 − w2)

−k+1wj+r
1 wj−r

2 (3.50)

=

∮

dw1w
2j−k′

1 (w1 − 1)k
′
∮

dyyj−r(1 − y)−k+1

= eiπk′
(e2πi(2j−k′) − 1)(e2πi(j−r) − 1)

∫ 1

0
dw1w

2j−k′

1 (w1−1)k
′
∫ 1

0
dyyj−r(1−y)−k+1

= eiπk′
(e2πi(2j−k′) − 1)(e2πi(j−r) − 1)

Γ(2j − k′ + 1)Γ(k′ + 1)

Γ(2j + 2)

Γ(j − r + 1)Γ(−k′)

Γ(j − r − k′ + 1)
,

where in the first two lines the integrals are taken counterclockwise in the unit circle, and

in the second line we changed variables to (y = w2/w1, w1). The contour deformations in

going from the second to the third line are the same as in the previous cases. The final

expression for E(j,m, n) is

E(j,m, n) =
λ̃π2

sin2(πk′)
γ(2j − k′ + 1)γ(−2j − 1)

Γ(j − r + 1)

Γ(j − r − k′ + 1)

Γ(−j + r̄ + k′)

Γ(−j + r̄)
. (3.51)

As before, to obtain the sought-for equations for R(j,m, n) we impose the condition

〈j′,m′, n′|v(1, 1)|j,m, n〉 = 〈j′,m′, n′|S−1v(1, 1)S|j,m, n〉 (3.52)

and this yields two equations for R(j,m, n), which are equivalent after using (3.37). The

resulting equation is

R(j − k′

2
,m + k′, n) = R(j,m, n)E−1(j,m, n) . (3.53)

This equation, along with (3.37) and (3.41), has as a solution

R(j,m, n) = ν2j+1 Γ(−2j−1)

Γ(2j+1)

Γ(1 − b2(2j+1))

Γ(1 + b2(2j+1))

Γ(j+1 − 1
2(m+nk))

Γ(−j − 1
2(m+nk))

Γ(j+1 + 1
2(m−nk))

Γ(−j + 1
2(m−nk))

(3.54)

where ν = −λΓ2(b2)/k2 = (λ̃π2/k′2 sin2(πk′))b
2
. This result coincides with the reflection

coefficient for the cigar obtained with other methods (see e.g. [12]).
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3.4 Relation with parafermionic symmetry

The two-dimensional black hole has two holomorphic and two anti-holomorphic parafer-

mionic conserved currents, which come from the affine symmetries of the SL(2, R) WZW

model. In terms of the fields φ,X, the currents are

ψ± = (i
√

k∂X ∓
√

k − 2∂φ)e
∓ 2i√

k
X

. (3.55)

In the work [12], following [27, 8], the reflection coefficient R(j,m, n) was obtained us-

ing properties of degenerate operators of the parafermionic symmetry. Remarkable, the

method of [12] to determine the reflection coefficient, leads to the same two difference

equations (3.41) and (3.53).

In this section we would like to point out some connections between the approach

in [12] and the methods used in this paper.

Firstly, note that the screening charges Q(z) and B(z) which appear in u and v are

built from primary operators of dimension one, which, as shown in [12], commute with the

parafermionic generators.

The primary fields of the parafermionic symmetry can be written as Vj,r,r̄. The method

of [12] exploits the fact that the operators V 1
2
, 1
2
, 1
2

and V k′
2

, k′
2

, k′
2

are degenerate operators of

the parafermionic algebra.2

One can check from the free field representation of the SL(2, R)/U(1) primaries given

in [12], that the free field representations of these two degenerate fields coincide with the

first terms in u(z, z̄) and v(z, z̄), namely their asymptotic value in the far past. The free

field representation of the primaries is valid when the interaction in the SL(2, R)/U(1)

Lagrangian is turned off. This suggests the identifications

u(z, z̄) = V 1
2
, 1
2
, 1
2
, (3.56)

v(z, z̄) = V k′
2

, k′
2

, k′
2

, (3.57)

in the fully interacting theory. To prove these identities, note that in the OPE of these two

degenerate fields with a generic primary of SL(2, R)/U(1), we have has the fusion rules [35]

V 1
2
, 1
2
, 1
2
Vj,r,r̄ ∼ C+

j,r,r̄

[

Vj+ 1
2
,r+ 1

2
,r̄+ 1

2

]

+ C−
j,r,r̄

[

Vj− 1
2
,r+ 1

2
,r̄+ 1

2

]

, (3.58)

and

V k′
2

, k′
2

, k′
2

Vj,r,r̄ ∼ C̃+
j,r,r̄

[

V
j+ k′

2
,r+ k′

2
,r̄+ k′

2

]

+ C̃−
j,r,r̄

[

V
j− k′

2
,r+ k′

2
,r̄+ k′

2

]

+ C̃×
j,r,r̄

[

V− k′
2
−j−1,r+ k′

2
,r̄+ k′

2

]

. (3.59)

The fields can be normalized so that C+
j,r,r̄ = C̃+

j,r,r̄ = 1. The first remarkable connection

between the approach of this paper and that of [12], are the identities

C−
j,r,r̄ = D(j,m, n) , (3.60)

C̃−
j,r,r̄ = E(j,m, n) , (3.61)

2The conventions in [12] differ from those of this paper by the replacements j, m, m̄ → −j, r, r̄.
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which will help us to establish (3.56)–(3.57).

Consider the field V 1
2
, 1
2
, 1
2

first. Taking the 〈j′,m′, n′| · |0〉 matrix element of both sides

of eq. (3.58) evaluated at V 1
2
, 1
2
, 1
2
(1)Vj,r,r̄(0), we get on the r.h.s, using (3.60), precisely

eq. (3.38). Therefore, the generic matrix elements of u and V 1
2
, 1
2
, 1
2

coincide, and this

establishes their identity as operators.

For the field V k′
2

, k′
2

, k′
2

, we should notice that the first and last term in the r.h.s of (3.59)

should be treated as the incoming and reflected wave function of the same field, since they

are related by j → −j − 1. We can define

Ṽ
j+ k′

2
,r+ k′

2
,r̄+ k′

2

≡ V
j+ k′

2
,r+ k′

2
,r̄+ k′

2

+ R−1(j + k′/2,m + k′, n)V− k′
2
−j−1,r+ k′

2
,r̄+ k′

2

, (3.62)

where we have identified

R−1(j + k′/2,m + k′, n) = C̃×
j,r,r̄ , (3.63)

and we should identify the state |j + k′

2 ,m + k′, n〉 with the action of Ṽ
j+ k′

2
,r+ k′

2
,r̄+ k′

2

on

the vacuum |0〉. Note that this is consistent with eqs. (3.33)–(3.37). Now eq. (3.59) can be

rewritten as

V k′
2

, k′
2

, k′
2

Vj,r,r̄ ∼
[

Ṽ
j+ k′

2
,r+ k′

2
,r̄+ k′

2

]

+ C̃−
j,r,r̄

[

V
j− k′

2
,r+ k′

2
,r̄+ k′

2

]

. (3.64)

Taking the 〈j′,m′, n′| · |0〉 matrix element on both sides of this equation, and using (3.48)

and (3.61), it follows that the generic matrix elements of v and V k′
2

, k′
2

, k′
2

coincide, and this

proves the identity (3.57).

In order to fully establish the validity of the field v as the dual to u, it must be shown

that in the Minkowskian cylinder a locality property for v similar to (2.28) and (3.32) holds,

as well as locality between v and u. But this follows from eqs. (3.56) and (3.57), and the

fact that the locality properties are valid for the V 1
2
, 1
2
, 1
2

and V k′
2

, k′
2

, k′
2

operators in the H+
3

WZW model, and survive in the parafermionic theory obtained as the coset H+
3 /U(1).
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A. Useful formulae

Γ(x)Γ(1 − x) =
π

sin(πx)
(A.1)

γ(x) =
Γ(x)

Γ(1 − x)
(A.2)

∫ 1

0
dw wα−1(1 − w)β−1 =

Γ(α)Γ(β)

Γ(α + β)
(A.3)
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